If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-9000=0
a = 1; b = 3; c = -9000;
Δ = b2-4ac
Δ = 32-4·1·(-9000)
Δ = 36009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36009}=\sqrt{9*4001}=\sqrt{9}*\sqrt{4001}=3\sqrt{4001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{4001}}{2*1}=\frac{-3-3\sqrt{4001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{4001}}{2*1}=\frac{-3+3\sqrt{4001}}{2} $
| 2d-3=3.d= | | (x^2)/3+3x-3000=0 | | 2x-5/10+3x-3/4=-6 | | 82-(3x+12)=3(x+7)+x | | 25/35=40/x | | 0.2(x+25)=8 | | x^2+3x-3000=0 | | 6x+4=(10x)(-3) | | 5x+3=70 | | 7-m÷8=20 | | 9=2q=1 | | 11x-83=-x+169 | | 6b-7=2 | | 8x-12+6x+14=90 | | 2/(n-6)=n^2 | | 2x+3.25x+1=65 | | 4(x+2)=2(2x+4 | | 14-5x=-18-14x | | 2(k+1)-5=5 | | 2+2d=6.d= | | X=4x+12/5 | | 14+y+84+21+24=180 | | 10x-(2x-9)=3(15-4x) | | -185+5x=-6x+79 | | 28-16=4(x-7) | | -12-47=22-9x | | (x+1)/(x-1)=25 | | 46+2y-20=12y-9-5y | | -7(6x-9)=-42+63 | | 12x-4=(2x+1 | | x+3+x+3=5x+3 | | x+14=-41 |